Assessing Secondary Teachers' Mathematical Habits of Mind

Sarah Sword Ryota Matsuura Miriam Gates Al Cuoco Glenn Stevens

DR K–12 PI Meeting June 2, 2016

1

TODAY'S AGENDA

- 1. Background on our work
- 2. Paper and pencil assessment
 - Review the items in small groups
 - Whole group discussion
- 3. Validity and reliability of the assessment
- 4. Further discussion and questions

WHAT IS ASTAHM?

Assessing Secondary Teachers' Algebraic Habits of Mind

ASTAHM is an NSF DRK-12 collaborative project funded in 2012 aimed at developing instruments to assess secondary teachers' mathematical habits of mind (MHoM).

WHAT DO WE MEAN BY MHOM?

We define mathematical habits of mind (MHoM) to be:

the specialized ways of approaching mathematical problems and thinking about mathematical concepts that resemble the ways employed by mathematicians.

Focus on MHoM

Our current focus is on three categories of MHoM:

- Seeking mathematical structure
 - Experimenting
 - Using language, notation, and pictures to acquire clarity and understanding
- Using mathematical structure
- Using mathematical language clearly (i.e., "Describing")

Remark: Focusing on three habits has allowed us to create instruments that are not too burdensome to use.

CONNECTION TO CCSSM

Our three mathematical habits are closely related to the following Common Core Standards for Mathematical Practice:

- MP1. Make sense of problems & persevere in solving them
- MP2. Reason abstractly & quantitatively
- MP6. Attend to precision
- MP7. Look for & make use of structure
- MP8. Look for & express regularity in repeated reasoning

CONNECTION TO CCSSM

We've parsed the SMPs for measurement purposes. E.g., the two processes of *seeking* and *using* structure in SMP7 look different when people do them, so we study them separately.

MET2 FRAMEWORK FOR MKT

The Mathematical Education of Teachers II (MET2) framework uses four categories to characterize some of the ways in which teachers understand mathematics:

- (1) As a scholar
- (2) As an educator
- (3) As a mathematician
- (4) As a teacher

KNOWING MATHEMATICS AS A MATHEMATICIAN

From our experience, we believe that (3) knowing mathematics as a mathematician...

- enriches and enhances the other ways of knowing mathematics,
- can bring efficiency and coherence to teachers' mathematical thinking and to their work with students,
- and thus is an important aspect of mathematical knowledge for teaching at the secondary level.

WHAT WE'RE REALLY STUDYING

So, what we're **really** studying is the intersection of:

- (3) knowing mathematics as a mathematician,
- (4) knowing mathematics as a teacher.

NCTM'S PRINCIPLES TO ACTIONS MATHEMATICS TEACHING PRACTICES

- Establish mathematics goals to focus learning
- Implement tasks that promote reasoning & problem solving
- Use and connect mathematical representations
- Facilitate meaningful mathematical discourse
- Pose purposeful questions
- Build procedural fluency from conceptual understanding
- Support productive struggle in learning mathematics
- Elicit and use evidence of student thinking

INITIAL MOTIVATION FOR RESEARCH

- Through our PD work, we've seen that MHoM is indeed a collection of habits teachers can acquire, rather than some static you-have-it-or-you-don't way of thinking.
- Teachers report that developing these mathematical habits has a tremendous effect on their teaching.
- We recognize the need for scientific-based evidence to establish that teachers' MHoM are not static and that these habits have a positive impact on their teaching practice.
- Instruments to measure these habits have not existed.

RESEARCH QUESTION

What are the mathematical habits of mind that secondary teachers use, how do they use them, and how can we measure them?

INSTRUMENTS FOR CONDUCTING RESEARCH

To investigate our research question, we've been developing:

- Detailed definition of MHoM, based on literature, our experiences as mathematicians, and classroom observations.
- A paper and pencil (P&P) assessment that measures how teachers use MHoM when doing math for themselves.
- An observation protocol measuring the nature and degree of teachers' use of MHoM in their classroom work.

Important: We've seen the need for both instruments, and also the value of developing all three components together.

What we aren't studying

There are many aspects of teaching that we value but we are *not* studying right now. For example:

- Teachers' dispositions (at least not directly)
- Teachers' beliefs
- Classroom discourse

WHAT WE AREN'T CREATING

- Our instruments are being designed for research and development purposes, not for teacher evaluation.
- They are meant to help researchers, school leaders, professional developers, and others in better understanding and meeting the mathematical needs of secondary teachers.

P&P ASSESSMENT: OVERVIEW

- We are developing a P&P assessment that measures how teachers use MHoM when doing math for themselves.
- The assessment has been field-tested with over 500 teachers. Field-tests are ongoing.
- Initial validity and reliability testing yielded promising results. More testing is being planned.
- Again, this is a tool for research, *not* for teacher evaluation.

P&P ASSESSMENT: KEY FEATURES

- Assessment measures how secondary teachers use mathematical habits of mind when doing mathematics.
- Items are accessible: most secondary teachers can solve them, or at least begin to solve them.
- Coding focuses on the *approach* to each item, not on obtaining "the correct solution."
- Assessment items are drawn from multiple sources, including our classroom observation work.

MAXIMUM VALUE

Find the maximum value of the function $f(x) = 11 - (3x - 4)^2$. Habit measured: Using mathematical structure

- Though most teachers obtained the same (correct) answer, there were vast variations in their approaches.
- These various approaches came in "clumps," as assessment experts and research literature had told us to expect.
- Using these responses, we developed a rubric that allows us to code how each teacher solved the problem.

SAMPLE CODE: SQUR

(SQUR) Since $(3x - 4)^2$ represents the square of some number, it is always ≥ 0 . Thus in the function $f(x) = 11 - (3x - 4)^2$, we are always subtracting a non-negative number from 11. To maximize f(x), we need $(3x - 4)^2 = 0$ so the max value is 11.

Sample solution:

$$F(x) = || - (3x - 4)^2$$
. Anything squared is ≥ 0 .
Therefore, $|| - (stuff squared)$ must be $\le ||$. So || is the max.

QUICK MATHEMATICAL NOTE

The reasoning described in SQUR depends on the fact that x can be chosen so that $(3x - 4)^2 = 0$. In many cases, we had no way of knowing if the teachers actually noticed this detail.

SAMPLE CODE: SYMM

(SYMM) Expanded f(x) into $f(x) = -9x^2 + 24x - 5$. Found the axis of symmetry using the formula x = -b/(2a) = 4/3. Evaluated f(4/3) = 11 to obtain the maximum value.

Sample solution:

$$f(x) = 11 - (3x - 4)^{2}$$

$$= -9x^{2} + 34x - 5$$

$$= 11 - (3(\frac{4}{3}) - 4)^{2}$$

$$= -9x^{2} + 34x - 5$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

$$= 11 - (4 - 4)^{2}$$

DIG INTO THE ITEMS/RUBRICS

Consider these questions as you review the items/rubrics:

- Where do you see MHoM being used in these approaches?
- Do the ways in which you think about this item match the habit that we claim it measures?
- How would you want students to approach this problem?
- What connections do you see to the SMPs?
 - $\circ~$ MP1. Make sense of problems & persevere in solving them
 - MP2. Reason abstractly & quantitatively
 - MP6. Attend to precision
 - MP7. Look for & make use of structure
 - MP8. Look for & express regularity in repeated reasoning

VALIDITY AND RELIABILITY RESULTS

The current version of the assessment was administered to 274 secondary teachers. Validity and reliability tests have yielded excellent results, as summarized in the table shown.

Statistic	Value	Interpretation	
Cronbach's Alpha	0.87	Excellent	
Chi-square	29.475 (<i>p</i> = 0.595)	Good. Indicates that the model fits the data well.	
Root mean square error of approximation (RMSEA)	0.01	Excellent	
Confirmatory fit index (CFI)	1.00	Excellent	
GFI (Goodness of fit index)	0.98	Excellent	
Tucker-Lewis index	1.01	Excellent	

MEASURING TEACHER CHANGE¹

			•	
		Mean	Std. Deviation	Std. Error Mean
Pair 1*	Full Assessment, Time 1	4.9	2.4	0.6
	Full Assessment, Time 2	5.4	2.6	0.7
Pair 2	Using Structure, Time 1	4.7	2.8	0.7
	Using Structure, Time 2	5.4	2.9	0.8
Pair 3	Language, Time 1	5.9	2.5	0.6
	Language, Time 2	5.8	2.5	0.6
Pair 4*	Seeking Structure, Time 1	4.3	2.6	0.7
	Seeking Structure, Time 2	5.3	3.3	0.9

Paired Samples Statistics for Teacher MHoM subscales, Time 1 and Time2 (N = 20)

¹Gates, M., Cordner, T., Kerins, B., Cuoco, A., Badertscher, E., & Burrill, G. (in press). Creating a hybrid immersive mathematics experience. *Mathematics Teacher*.

FURTHER DISCUSSION QUESTIONS

- How can we ensure that we are indeed measuring MHoM and not simply capturing teachers' prior (traditional) knowledge of mathematics?
- What constitutes evidence of a "way of thinking" or "intent of an approach"? How much must a partial response include to fit into a particular category?
- What are the affordances and limitations of our instruments? What aspects of MKT are we capturing with the P&P assessment? What aspects are we missing?

HYB^{2}

To subtract a larger number from a smaller number, such as 38 - 72, we typically "switch and negate." We first compute 72 - 38 = 34, then negate this difference, so that 38 - 72 = -34 (which is correct). Here is another approach, using the standard subtraction algorithm:

Here, we first look at the ones place and compute 8 - 2 = 6. Then we look at the tens place and find 3 - 7 = -4. Lining them up, we obtain -46 (which is incorrect). Explain the mathematical error in this approach, i.e., why does it result in an incorrect answer?

^{2}**Note:** Hy Bass suggested a version of this item.

LEARN MORE OR PARTICIPATE

Want to use the assessment, or participate in the research? Learn more about our project at:

mhomresearch.edc.org

If you have further feedback and/or questions, email us at: $ssword@edc.org~({\rm Sarah~Sword})$